- Home
- Standard 11
- Physics
A body of mass $M$ is dropped from a height $h$ on a sand floor. If the body penetrates $x\,\,cm$ into the sand, the average resistance offered by the sand of the body is
$Mg\left( {\frac{h}{x}} \right)$
$Mg\left( {1\,+\,\frac{h}{x}} \right)$
$Mgh\,+\,Mgx$
$Mg\left( {1\,-\,\frac{h}{x}} \right)$
Solution
If the body strikes the sand floor with a velocity $v,$ then $m g h=\frac{1}{2}$ $m v^{2} .$
With this velocity $v,$ when body passes through the sand floor it comes to rest after travelling a distance $x$.
Let $F$ be the resisting force acting on the body. Then the resultant force $=$ $\mathrm{F}-\mathrm{Mg}$ using work $energy-theorem$ $:$
$(F-M g) x=\frac{1}{2} M v^{2}-0$
or $\quad(F-M g) x=M g h$
or $\mathrm{F} x=\mathrm{Mgh}+\mathrm{Mgx}$
$F=M g\left(1+\frac{h}{x}\right)$